과학자들은 처음으로 블랙홀 뒤에서 빛을 감지하여 알버트 아인슈타인의 일반 상대성 이론에 근거한 예측을 수행했습니다.
스탠포드 대학 천체 물리학자인 댄 윌킨스와 그의 동료들은 지구에서 8억 광년 떨어진 은하 중심에 위치한 초대질량 블랙홀에서 방출되는 X선을 관찰했습니다.
비록 빛이 블랙홀에서 빠져나올 수는 없지만 주변의 엄청난 중력이 물질을 수백만도까지 가열할 수 있기 때문에 이 밝은 빛 플레어는 이상하지 않습니다. 이것은 전파와 X선을 방출할 수 있습니다. 때때로 이 초고온 물질은 X선과 감마선을 포함한 빠른 제트에 의해 우주로 던져집니다.
그러나 Wilkins는 나중에 발생하고 다른 색을 띠는 더 작은 X-선 섬광을 발견했습니다.
스탠포드 대학의 입자 물리학 및 우주론을 위한 Kavli 연구소와 SLAC 국립 가속기 연구소의 연구 저자이자 연구 과학자인 Wilkins는 성명에서 말했습니다.
그러나 블랙홀의 이상한 성질 때문에 관측이 가능했다.
“우리가 그것을 볼 수 있는 이유는 블랙홀이 공간을 왜곡하고, 빛을 휘게 하고, 자기장을 스스로 감싸고 있기 때문입니다.”라고 그는 말했습니다.
“50년 전 천체 물리학자들이 블랙홀 근처에서 자기장이 어떻게 작용할지에 대해 추측하기 시작했을 때, 그들은 언젠가 우리가 그것을 직접 관찰하고 아인슈타인의 일반 상대성 이론이 작동하는 것을 볼 수 있는 기술을 갖게 될 것이라고 생각하지 못했습니다”라고 그는 말했습니다. . 연구의 공동 저자이자 인문 과학 대학의 루크 블라썸 교수이자 스탠포드 대학의 물리학 교수인 Roger Blandford는 성명에서 말했습니다.
아인슈타인의 이론, 즉 중력이 시공을 왜곡하는 물질이라는 생각은 새로운 천문학적 발견으로 백년 동안 지속되었습니다.
일부 블랙홀에는 물질이 블랙홀에 떨어지고 극한의 온도로 가열될 때 블랙홀 주위에 형성되는 밝은 빛의 고리인 후광이 포함되어 있습니다. 이 X선 빛은 과학자들이 블랙홀을 연구하고 매핑할 수 있는 한 가지 방법입니다.
가스가 블랙홀에 떨어지면 수백만도까지 올라갈 수 있습니다. 이 강렬한 가열로 인해 전자가 원자에서 분리되어 자기 플라즈마가 생성됩니다. 블랙홀의 강한 중력으로 인해 이 자기장은 블랙홀 위로 높이 호를 그리며 회전하며 부서질 때까지 회전합니다.
이것은 태양의 코로나, 또는 뜨거운 외부 대기와 다르지 않습니다. 태양의 표면은 자기장으로 덮여 있어 태양 코로나의 하전 입자와 상호 작용할 때 고리와 기둥이 형성됩니다. 이것이 과학자들이 블랙홀 주변의 고리를 후광이라고 부르는 이유입니다.
Wilkins는 “제한되고 블랙홀 근처에서 포착되는 이 자기장은 주변의 모든 것을 가열하고 이러한 고에너지 전자를 생성하여 계속해서 X선을 생성합니다.”라고 말했습니다.
X선 플레어를 연구하는 동안 Wilkins는 더 작은 섬광을 관찰했습니다. 그와 그의 동료 연구원들은 더 큰 X선 플레어가 반사되고 “원반 뒤쪽에서 블랙홀 주위로 휘어져” 블랙홀의 뒷면을 볼 수 있다는 것을 깨달았습니다.
Wilkins는 “나는 이러한 메아리가 우리에게 어떻게 들릴지에 대한 이론적 예측을 구축해 왔습니다.”라고 말했습니다. “저는 제가 개발 중인 이론에서 이미 그것들을 보았기 때문에 망원경 관찰에서 보자마자 그 연관성을 파악할 수 있었습니다.”
관측은 NASA의 NuSTAR와 유럽 우주국의 XMM-Newton이라는 두 개의 우주 X선 망원경을 사용하여 이루어졌습니다.
블랙홀의 코로나를 이해하려면 더 많은 모니터링이 필요하며 유럽우주국의 차기 X선 관측소인 아테나(Athena)가 2031년에 발사될 예정이다.
Wilkins는 “X선 망원경에서 본 것보다 훨씬 더 큰 거울을 가지고 있으며 훨씬 짧은 관찰 시간에 고해상도 이미지를 얻을 수 있습니다.”라고 말했습니다. “따라서 우리가 현재 데이터에서 얻기 시작한 그림은 이 새로운 천문대를 통해 훨씬 더 명확해질 것입니다.”
블랙홀 뒤의 빛이 처음으로 감지되었습니다. - Wpick
Read More
No comments:
Post a Comment